𝐄𝐏𝐂 (𝐄𝐧𝐠𝐢𝐧𝐞𝐞𝐫𝐢𝐧𝐠, 𝐏𝐫𝐨𝐜𝐮𝐫𝐞𝐦𝐞𝐧𝐭 & 𝐂𝐨𝐧𝐬𝐭𝐫𝐮𝐜𝐭𝐢𝐨𝐧 ) -> 𝐃𝐚𝐭𝐚 𝐈𝐧𝐭𝐞𝐥𝐥𝐢𝐠𝐞𝐧𝐜𝐞 𝐏𝐢𝐩𝐞𝐥𝐢𝐧𝐞 𝐚𝐭 𝐓𝐞𝐜𝐡𝐧𝐢𝐩 𝐄𝐧𝐞𝐫𝐠𝐢𝐞𝐬 | 𝐏𝐚𝐫𝐢𝐬, 𝐅𝐫𝐚𝐧𝐜𝐞

​̲𝐏​̲𝐫​̲𝐨​̲𝐛​̲𝐥​̲𝐞​̲𝐦​̲

Analysts and business teams in T.EN often spent hours together per query of data reconsiling insights from multiple scattered sources - ​̲𝒔​̲𝒏​̲𝒐​̲𝒘​̲𝒇​̲𝒍​̲𝒂​̲𝒌​̲𝒆(internal data warehouse), ​̲𝑹​̲𝒚​̲𝒔​̲𝒕​̲𝒂​̲𝒅​̲,​̲ ​̲𝑩​̲𝒍​̲𝒐​̲𝒐​̲𝒎​̲𝒃​̲𝒆​̲𝒓​̲𝒈​̲,​̲ ​̲𝑺​̲𝒂​̲𝒍​̲𝒆​̲𝒔​̲𝒇​̲𝒐​̲𝒓​̲𝒄​̲𝒆​̲ and other market intellignece providers. This slowed down decision-making in large-scale EPC projects (𝐡𝐲𝐝𝐫𝐨𝐠𝐞𝐧, 𝐞𝐭𝐡𝐲𝐥𝐞𝐧𝐞, 𝐂𝐂𝐔𝐒). .

---

​​̲𝐀​̲𝐩​̲𝐩​̲𝐫​̲𝐨​̲𝐚​̲𝐜​̲𝐡

- 𝗗𝗮𝘁𝗮 𝗜𝗻𝗴𝗲𝘀𝘁𝗶𝗼𝗻 & 𝗜𝗻𝘁𝗲𝗴𝗿𝗮𝘁𝗶𝗼𝗻: Designed and developed pipelines to collect structured & semi-structured data from snowflake, Rystad, Bloomberg, and other subscription feeds.

- 𝗖𝗹𝗼𝘂𝗱 𝗘𝗻𝘃𝗶𝗿𝗼𝗻𝗺𝗲𝗻𝘁: Built entirely in the Azure ecosystem (Azure Data Factory, Azure Functions, Synapse Analytics, Logic Apps).

- 𝗣𝗿𝗼𝗰𝗲𝘀𝘀𝗶𝗻𝗴 & 𝗦𝘁𝗼𝗿𝗮𝗴𝗲 : Unified datasets within Snowflake for scalable querying and analytics.

- 𝗕𝘂𝘀𝗶𝗻𝗲𝘀𝘀 𝗔𝗽𝗽𝗹𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗜𝗻𝘁𝗲𝗴𝗿𝗮𝘁𝗶𝗼𝗻 : Connected curated data streams to Salesforce and other internal tools, enabling commercial and strategy teams to directly access insights.

- 𝗔𝘂𝘁𝗼𝗺𝗮𝘁𝗶𝗼𝗻: Implemented scheduling, logging, and monitoring for pipeline reliability.

--- ​̲𝐀​̲𝐫​̲𝐜​̲𝐡​̲𝐢​̲𝐭​̲𝐞​̲𝐜​̲𝐭​̲𝐮​̲𝐫​̲𝐞​̲

[Data Sources : Snowflake/Rystad /Bloomberg] -> [Azure Data Factory + Functions] -> [Snowflake(Unified)] ->[Salesforce PowerBI]

​̲𝐓​̲𝐞​̲𝐜​̲𝐡​̲ ​̲𝐒​̲𝐭​̲𝐚​̲𝐜​̲𝐤​̲ ​̲

- 𝗖𝗹𝗼𝘂𝗱 : Azure Data Factory, Azure Functions, Azure Synapse

- 𝗗𝗮𝘁𝗮 : Snowflake, Rystad, Bloomberg, other EPC data providers

- 𝗜𝗻𝘁𝗲𝗴𝗿𝗮𝘁𝗶𝗼𝗻: Salesforce, Power BI for dashboards

- 𝗣𝗿𝗼𝗴𝗿𝗮𝗺𝗺𝗶𝗻𝗴 : Python (ETL/ELT scripts), SQL

---

​̲𝐎​̲𝐮​̲𝐭​̲𝐜​̲𝐨​̲𝐦​̲𝐞​̲ ​̲

- Reduced query resolution time from 45 minutes to under 2 minutes.

- Improved data accessibility for cross-functional teams (engineering, procurement, sustainability, and commercial).

- Achieved 70%+ adoption within 2 months, accelerating EPC decision-making and strengthening data-driven project evaluations.